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Abstract

We study causal inference in a setting in which units consisting of pairs of individuals (such

as married couples) are assigned randomly to one of four categories: a treatment targeted at

pair member A, a potentially different treatment targeted at pair member B, joint treatment,

or no treatment. The setup includes the important special case in which the pair members

are the same individual targeted by two different treatments A and B. Allowing for endoge-

nous non-compliance, including coordinated treatment takeup, as well as interference across

treatments, we derive the causal interpretation of various instrumental variable estimands us-

ing weaker monotonicity conditions than in the literature. In general, coordinated treatment

takeup makes it difficult to separate treatment interaction from treatment effect heterogene-

ity. We provide auxiliary conditions and various bounding strategies that may help zero in on

causally interesting parameters. As an empirical illustration, we apply our results to a program

randomly offering two different treatments, namely tutoring and financial incentives, to first

year college students, in order to assess the treatments’ effects on academic performance.
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1 Introduction

The experimental approach to establishing the causal effect of a treatment is based on allo-

cating units randomly to treatment and control, thereby precluding any systematic difference

between the two groups other than the treatment itself. While unit-level treatment effects

may be heterogeneous, comparing the average outcome in the treated and control groups

gives a consistent estimate of the average treatment effect. This deceptively simple descrip-

tion of the experimental ideal, which originates in the work of Fisher (1925), embodies several

further assumptions, formalized later by Rubin (1974, 1978) and others. A lot of subsequent

work on causal inference has sought to extend the analysis of experimental data to more

complicated situations with some of the following features.

First, in real world experiments perfect compliance with the intended treatment assign-

ment is not always possible or ethical to enforce. If non-compliance is endogenous (i.e., it

depends on unobserved confounders), then the average difference between the treated and

non-treated values does not represent the treatment effect alone but selection effects as well.

Second, randomization itself does not ensure that the treatment status of an individual unit

does not interfere with the potential outcomes of another, violating what is called the stable

unit treatment value assumption (SUTVA) in the Rubin causal model. Third, there are

experimental setups in which units are potentially subject to multiple, but not mutually

exclusive, treatments that may interact with each other.

In this paper we derive the causal interpretation of various instrumental variable (IV)

estimands in an experimental or quasi-experimental setup that extends the basic Rubin

causal model in all three directions mentioned above. More concretely:

(i) The population is a set of ordered pairs comprised of members A and B. There are two

binary treatments, denoted as DA and DB, accessible to member A and member B,

respectively. The outcome of interest may be associated with member A alone, member

B alone, or the pair itself (hence both direct and indirect effects can be identified).

The setup covers the special case in which the pair members are the same physical

unit targeted by two treatments or when the two treatments are identical.
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(ii) There are two binary instruments, one targeted at member A (ZA) and one at member

B (ZB), representing randomized assignment to treatment or some exogenous incentive

to take the treatment. Nevertheless, compliance is imperfect (endogenous), including

possible coordination across pair members in treatment take-up. More formally, B’s

instrument is allowed to affect A’s treatment status (and vice versa).

(iii) The two treatments may interfere with each other within each pair, i.e., the potential

outcomes of a pair member depend not only on their own treatment status but also on

their partner’s. The extent to which the two treatments interact may vary from pair

to pair in an unrestricted way.

We subsequently present two examples which illustrate these ideas.

Example 1: Assume that the population of interest are married couples where one member

suffers from depression and the other does not. There are two binary treatments: an an-

tidepressant medication for the depressed spouse (DA), and an educational program about

depression for the healthy spouse (DB). The dependent variable may measure the sever-

ity of the depression symptoms. Even if the intended treatment assignments (ZA and ZB)

are random, the actual takeup decision may well be endogenous and coordinated across

the spouses. Moreover, the two treatments may interact—the medication might be more

effective if accompanied by behavioral adjustments on the partner’s part.

Example 2: Angrist, Lang and Oreopoulos (2009) assess a randomized program providing

two treatments to first year college students, namely academic services in the form of tutoring

(DA) and financial incentives (DB), both aimed at improving performance in end-of-semester

exams. Students who entered college (at one Canadian campus) in September 2005 and had

a high school grade point average lower than the upper quartile were randomly offered either

one, both or no treatment. Therefore, instruments ZA and ZB are binary indicators for being

offered tutoring and/or financial incentives. In this scenario, the same physical units (i.e.,

the students) are targeted by two different treatments which are randomly assigned, while

the actual takeup of tutoring or financial incentives might be endogenous as it is likely driven
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by personality traits also affecting academic performance. In addition, the treatments may

interact such that, for instance, the effectiveness of financial incentives might increase when

also receiving tutoring. Section 4 provides an empirical illustration of our results based on

this example.

As mentioned above, there is now a large literature that addresses these problems, a sub-

set at a time, in different settings. The seminal paper by Imbens and Angrist (1994) deals

with endogenous non-compliance in the presence of individual treatment effect heterogeneity.

A growing number of studies have considered relaxations of SUTVA (thus, permitting specific

forms of interference) in various (quasi-)experimental settings; see, e.g., Sobel (2006), Hong

and Raudenbush (2006), Hudgens and Halloran (2008), Ferracci, Jolivet and van den Berg

(2014) or Huber and Steinmayr (2021). Particularly relevant in our context are the studies by

Kang and Imbens (2016), Imai, Jiang and A. Malani (2021) and Vazquez-Bare (2022), who

combine relaxations of SUTVA with treatment non-compliance. Finally, Blackwell (2017)

presents a framework aimed at studying the interaction between two (randomized) treat-

ments with non-compliance. He considers an application in political science, but multiple

treatments also occur in other disciplines like economics, epidemiology or medicine (see, e.g.,

VanderWeele and Knol 2014).

Our framework is most closely related to Blackwell (2017; henceforth, BW) and Vazquez-

Bare (2022; henceforth, VB) but it extends both in certain directions—we now explain the

similarities and differences in detail.1 While BW allows for a unit to be targeted by two

interacting treatments, he maintains the same type of treatment exclusion restriction as

Kang and Imbens (2016). This means that the takeup of each treatment is assumed to be

dependent on the corresponding instrument alone, which rules out “instrument spillovers”

or coordinated treatment takeup. In VB the individual units are also organized into pairs

but the two members are supposed to be targeted by the same treatment and the focus is on

spillover effects from one pair member to the other. Importantly, our most general results

are derived under weaker monotonicity restrictions on the instruments than in VB. While we

also maintain one-sided non-compliance with respect to a treatment’s “own” instrument, we

1The basic features of our framework were established already in the MA thesis Kormos (2018).
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do not impose any monotonicity restrictions on how the other instrument affects treatment

takeup. For example, the instrument ZA may affect the takeup of treatment B positively for

some units and negatively for others. We call the latter type cross-defiers (w.r.t. ZA), and

show that this non-standard type is necessary to accommodate the application in Example 2.

VB’s framework (or any other we know of) does not allow for such degree of heterogeneity

in compliance.

The price of generality is that some of the identification results are weak in the sense that

interesting causal parameters are inextricably tied up with terms arising from treatment ef-

fect heterogeneity and auxiliary conditions are needed to obtain more useful interpretations.

Nevertheless, the advantage of the general approach is that one does not need to pre-commit

to a theoretical framework that does not quite fit the data and any further auxiliary condi-

tions can be tailored to the application at hand. Our empirical application illustrates the

advantages of starting from a general interpretative framework.2

Our main result concerns the IV (2SLS) regression of the outcome onDA, DB and DADB,

instrumented by ZA, ZB and ZAZB. While this regression is also studied by VB, he does so

under more stringent conditions, and does not attempt to draw out any interesting causal

parameters buried in the coefficient on the interaction term DADB.
3 It is true that under our

(even more general) conditions this coefficient does not cleanly identify the local average in-

teraction effect across the two treatments. Nevertheless, we use the application in Example 2

to show how to construct different types of bounds on the “confounding” treatment effect

heterogeneity terms so that the estimand becomes more informative about the interaction

between the two treatments, which is often of central interest in applications. One approach

uses prior restrictions on heterogeneity while the other is a Manski-type approach that relies

on weak auxiliary conditions and the data.

2For example, BW (Sec. 4.2) studies the effect of two voter mobilization treatments: professional and

volunteer phone calls. He finds violations of the treatment exclusion restriction at three experimental sites

(with varying signs on the “other” instrument) and is forced to drop these observations. In fairness, the

dropped observations represent only a small fraction of the data, but the broader point is that the need for

general monotonicity assumptions can arise easily in applications.
3He states a formula in the Supplemental Appendix and notes that it does not lend itself to a direct

causal interpretation.
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We also state identification results for two types of Wald estimands: the IV regression of

the outcome on, say, DA in the subsample of pairs where ZB is turned off or, respectively,

turned on. While in VB’s setting the first Wald estimand identifies the standard LATE

parameter associated with DA,
4 we show that the lack of monotonicity in instrument B

makes the interpretation of the estimand more complex. In particular, instead of capturing

the average effect of treatment A for compliers with ZA, the coefficient reflects the average

treatment effect for the union of two groups: compliers with ZA and cross-defiers for ZB. The

second Wald estimand, which is not studied by VB at all, conditions on ZB being turned

on and has a complicated interpretation in general. However, under plausible auxiliary

conditions this estimand also lends itself to an insightful causal interpretation, stated as a

weighted average of three local average treatment effects with identified weights.

The rest of the paper is organized as follows. Section 2 presents a potential outcome

framework for pairs with endogenous (non-)compliance. We state and discuss our identifica-

tion results in Section 3. Section 4 presents an empirical application to a program randomly

offering two treatments (tutoring and financial incentives) to college students that aim to

increase academic performance. Section 5 concludes. Additional results (on deriving Manski-

type bounds for conditional means of the potential outcomes) are provided in Appendix A

while the proofs of all results are collected in Appendix B.

2 A potential outcome framework for pairs

2.1 Variable definitions

The population consists of ordered pairs of individuals (e.g., married couples); we will refer

to the first member of a pair as member A and the second as member B. There are two

potentially different treatments—one targeted at member A and one targeted at member B.

We will denote the corresponding treatment status indicators asDA andDB, respectively. By

4In both VB’s and our setting the interpretation of this parameter (and others) depends on whether the

outcome is associated with member A or B. In the former case a direct causal effect is identified and in the

latter it is an indirect (spillover) effect.

6



representing individual units as pairs with identical members, the setup also accommodates

the analysis of two (interacting) treatments received by a single unit.

We are interested in the effect of DA and/or DB on some dependent variable Y . This

outcome may be associated with member A alone, member B alone, or the pair itself. The

observed value of Y is given by one of four potential outcomes: Y (dA, dB) for dA, dB ∈ {0, 1}.

For example, Y (1, 0) is the potential outcome if one imposes DA = 1 and DB = 0, i.e.,

member A is exposed to treatment A, but member B is not exposed to treatment B. To

make the notation less cluttered, we will omit the comma and simply write Y (10) whenever

actual figures (’1’ and/or ’0’) are used in the argument. Using the potential outcomes and

the treatment status indicators, we can formally express the observed outcome as

Y = Y (11)DADB + Y (10)DA(1−DB) + Y (01)(1−DA)DB

+Y (00)(1−DA)(1−DB). (1)

Treatment effect identification is facilitated by a pair of binary instruments, ZA and ZB,

assigned to pair members A and B, respectively. We think of these instruments as indicators

for (randomly assigned) treatment eligibility or the presence of an exogenous incentive to

take the corresponding treatment. The leading example is a randomized control trial, where

ZA and ZB are the experimenter’s intended treatment assignments for pair member A and

B, respectively. Compliance with these assignments is, however, endogenous and possibly

coordinated across pair members.

Thus, there are four potential treatment status indicators associated with each pair

member; they are denoted as DA(zA, zB) for member A and DB(zA, zB) for member B,

zA, zB ∈ {0, 1}. For example, DA(01) indicates whether member A of a pair takes up treat-

ment A when they are not assigned (ZA = 0) but their partner is assigned to treatment B

(ZB = 1). The actual treatment status of member A can be written as

DA = DA(11)ZAZB +DA(10)ZA(1− ZB) +DA(01)(1− ZA)ZB

+DA(00)(1− ZA)(1− ZB). (2)

There is of course a corresponding formula for DB.
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We now formally impose standard IV assumptions on ZA and ZB.

Assumption 1 [IV] (i) Given the values of the treatment status indicators DA and DB,

the potential outcomes do not depend on the instruments ZA and ZB. (ii) The instruments

(ZA, ZB) are jointly independent of the potential outcomes and the potential treatment

status indicators. (iii) P (ZA = 1) ∈ (0, 1), P (ZB = 1) ∈ (0, 1), and P (ZA = ZB) ∈ (0, 1).

The exclusion restriction stated in part (i) of Assumption 1 is one of the defining prop-

erties of an instrument, and it justifies (ex-post) the potential outcomes being indexed by

(dA, dB) only. Part (ii), known as “random assignment,” states that the instrument values

(ZA, ZB) are exogenously determined. This assumption holds, by design, in an experimental

setting where intended treatment assignments are explicitly randomized. Part (iii) states

that the intended treatment assignments follow a 2 × 2 factorial design, i.e., there is a pos-

itive fraction of pairs assigned to each of the following four categories: treatment A alone,

treatment B alone, both treatments, or neither treatment.

We will impose further assumptions on the potential treatment status indicators in Sec-

tion 2.3.

2.2 Parameters of interest

Let P be a subset of the population of pairs. We define the following treatment effect

parameters and notation:

• ATEA|B̄(P) := E[Y (10)− Y (00)| P] denotes the average effect of applying treatment

A alone in the subpopulation P. In other words, this is the average effect of treatment

A conditional on treatment B being “turned off” in the subpopulation P.

• ATEA|B(P) := E[Y (11)− Y (01)| P] denotes the average effect of applying both treat-

ments to the subpopulation P relative to applying treatment B alone; in other words,

this is the average effect of treatment A conditional on maintaining treatment B.

• ATEAB(P) := E[Y (11) − Y (00)| P] denotes the average effect of applying treatment

A and B jointly to the subpopulation P relative to applying no treatment at all.
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The parameters ATEA|B̄(P) and ATEA|B(P) are called local average conditional effects,

or LACEs, by BW, while ATEAB(P) is called the local average joint effect (LAJE). For a

given P, the local average joint effect is the sum of the two conditional effects. The difference

of the two conditional effects, ATEA|B(P)− ATEA|B̄(P), measures the interaction between

the two treatments in group P and is termed the local average interaction effect (LAIE)

by ibid. If this quantity is positive, the two treatments reinforce each other, while if it is

negative, then they work against each other. One can define analogous LACE parameters for

treatment B by interchanging the roles of A and B in the definitions above. The associated

joint and interaction effects stay unchanged.

Given the potential interference across pair members, the interpretation of these param-

eters also depends on the definition of the outcome Y . In particular, if Y is associated with

pair member A alone, then ATEA|B̄(P) and ATEA|B(P) measure what is called the direct

effect of treatment A by Hudgens and Halloran (2008). On the other hand, if Y is associated

with member B alone, then ATEA|B̄(P) and ATEA|B(P) measure the indirect or spillover ef-

fect of treatment A on pair member B. For example, if the treatment is vaccination, and the

outcome is the incidence of a disease, then the vaccination of member A confers protection

on member A, but also indirectly protects his or her partner.

2.3 Compliance types

The setup presented in Section 2.1 assigns four potential treatment indicators to each pair

member, corresponding to the four possible incentive schemes represented by (ZA, ZB).

Without any further restrictions on treatment takeup, the possible configurations of these 8

potential treatment variables partition the population of pairs into 28 = 256 different com-

pliance profiles. At this level of generality a couple of regression-based estimands can hardly

be a meaningful summary of the various average treatment effects across types. Therefore,

similarly to VB, we impose one-sided non-compliance with respect to the treatment’s own in-

strument, which dramatically reduces the number of possible compliance profiles. Formally,

we require:

Assumption 2 [One-sided non-compliance] DA(0, z) = 0 and DB(z, 0) = 0 for z ∈ {0, 1}.
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Assumption 2 states that neither member of the pair has access to their own treatment

unless they have been “randomized in,” i.e., the value of their own instrument is 1. Whether

or not this assumption is reasonable depends on the institutional setting and details of the un-

derlying experiment. In general, one-sided non-compliance presumes that the experimenter

is able to exclude individuals from all sources of the treatment.

Under Assumption 2, each pair member may belong to one of only four compliance types,

summarized by the following definition.

Definition 1 Under Assumption 2, member A of a pair (A,B) is called a

• self-complier if DA(10) = 1 and DA(11) = 1;

• joint complier if DA(10) = 0 and DA(11) = 1;

• never taker if DA(10) = 0 and DA(11) = 0;

• cross-defier if DA(10) = 1 and DA(11) = 0.

Furthermore, a pair member is a complier if they are either a self-complier or joint-

complier. The set of self-compliers, joint compliers, never takers, cross-defiers and compliers

is abbreviated as s, j, n, d and c, respectively. Note that c = s ∪ j.

Remarks

1. The corresponding definitions for member B can be stated in a similar way; these are

omitted for brevity (replace the subscript A with B on the potential treatment status

indicators and interchange the two arguments).

2. A self-complier’s treatment status is determined solely by the value of their own in-

strument. Indeed, for such a member A, DA(00) = DA(01) = 0 by one-sided non-

compliance and DA(10) = DA(11) = 1 by definition. By contrast, a joint complier

takes the treatment if and only if both instruments are turned on; their own instrument

is not sufficient to induce participation. Joint compliers are called group compliers by

VB.
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3. Cross-defiers are a non-standard type. If member A is a cross-defier, then they will

comply with their own instrument ZA as long as the other instrument is absent. How-

ever, for such individuals the presence of ZB represents a strong incentive against

treatment takeup; so strong in fact that it overpowers the presence of ZA and causes

the individual to abandon treatment. Thus, the individual ultimately acts in defiance

of ZB.
5

4. Finally, a never taker cannot be induced to take the treatment by any instrument

configuration.

Given the four individual compliance types, every pair belongs to one of the 16 compliance

profiles (A,B) ∈ {s, j, d, n} × {s, j, d, n}. For example, (s, j) is the set of pairs where A is a

self-complier and B is a joint complier, etc. Furthermore, we will use the notation (c, ·) to

denote the set of pairs where member A is a complier, etc. The following assumption ensures

that some of these categories are not vacuous (e.g., there are at least some individuals who

respond to their own instrument).

Assumption 3 [First stage] (i) P (s ∪ d, ·) > 0 and P (·, s ∪ d) > 0 [⇔ P (DA(10) = 1) > 0

and P (DB(01) = 1) > 0]; (ii) P (c, c) > 0 [⇔ P (DA(11) = 1) > 0 and P (DB(11) = 1) > 0].

In applications it may be possible to invoke further assumptions that reduce the number of

compliance types or profiles. The personalized encouragement assumption (Kang and Imbens

2016), or treatment exclusion restriction (BW), states that an individual’s treatment takeup

decision depends on their own instrument alone; e.g., DA(z, 1) = DA(z, 0) for z ∈ {0, 1}.

This condition rules out the existence of joint compliers and cross-defiers with respect to

treatment A.

A testable implication of the personalized encouragement assumption (for member A) is

that if one runs an OLS regression ofDA on ZB and a constant in the ZA = 1 subsample, then

the coefficient on ZB should be zero (insignificant). Of course, the point of the present paper

is to accommodate situations in which this slope coefficient is significantly different from

5Defiance is only partial in the the sense that the individual does not necessarily act against ZB = 0, but

adding this idea to the moniker would be tedious. An alternative label might be “deserters.”
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zero. If it is positive, then it may be possible to argue that no individual treats the presence

of ZB as an incentive against taking treatment A, i.e., there are no cross-defiers. Conversely,

if the coefficient is negative, then cross-defiers must be present in the population, but it may

be possible to argue against the existence of joint compliers (ZB = 1 could be perceived as

a disincentive for DA = 1 by all). Our empirical application in Section 4 illustrates how to

exploit such simplifications in practice to enhance the interpretation of IV estimands.

Our framework can also accommodate simplifying assumptions on pair formation rather

than individual types. For example, one might postulate that there are no (n, j) or (j, n)

pairs—we will use this restriction in Section 3.2 to sharpen one of our identification results.

This assumption is plausible if member A’s utility of taking treatment A is affected by ZB

only through member B’s actual treatment status DB. If B is a never taker then DB is

necessarily zero, and the value of ZB is no longer relevant for A’s decision. Hence A cannot

be a joint complier. For example, ZB could be a randomized monetary reward payable only

on actual treatment takeup by member B. If B never receives the payment, he cannot share

it with A. On the other hand, (n, j) or (j, n) pairs may well exist if A has direct access to

the incentive represented by ZB regardless of DB. This is the case, for example, if the pair

represents a single individual targeted by two treatments.6

3 Identification results

3.1 Population proportion of compliance profiles

The exact type of a given pair is generally unobserved as it depends on the pair’s behavior

in counterfactual scenarios. Nevertheless, the observed conditional probabilities

P (DA = dA, DB = dB|ZA = zA, ZB = zB), dA, dB, zA, zB ∈ {0, 1} (3)

6Suppose that individuals participate in a study on the health benefits of physical exercise. Specifically,

there are two treatments: running (DA) and swimming (DB). The instrument ZA is a seminar on the health

benefits of running and ZB a similar seminar on the benefits of swimming. A person who cannot swim will

be a never taker with respect to DB. Nevertheless, it is conceivable that for the same person DA(1, 0) = 0

but DA(1, 1) = 1. This means that a single lecture is not sufficient to convince this person to take up running

but after hearing about the health benefits of other types of exercise as well, he eventually decides to do so.
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can be used to identify the relative frequency of a number of compliance profiles in the

population. Nevertheless, not all probabilities under (3) carry independent information.

This is for two reasons: first, for any given (zA, zB), the corresponding probabilities add up

to 1, and, second, ZA = 0 automatically implies DA = 0, and ZB = 0 automatically implies

DB = 0 by Assumption 2. It follows that there are only five independently informative

moments, which of course makes it impossible to identify the relative frequencies of all 16

compliance profiles separately.

Let P (a, b) denote the population proportion of pairs with compliance profile (a, b) ∈

{s, j, n, d}2; e.g., P (s, n) is the proportion of pairs where A is a self-complier and B is

a never-taker, etc. Lemma 1 presents the interpretation of five independent conditional

probabilities of the form (3). The subsequent corollary provides further results.

Lemma 1 Suppose that Assumptions 1 and 2 are satisfied. Then:

P (DA = 1|ZA = 1, ZB = 0) = P (s ∪ d, ·) = P (s, ·) + P (d, ·)

P (DB = 1|ZA = 0, ZB = 1) = P (·, s ∪ d) = P (·, s) + P (·, d)

P (DA = 1, DB = 0|ZA = 1, ZB = 1) = P (c, n ∪ d) = P (c, n) + P (c, d)

P (DA = 0, DB = 1|ZA = 1, ZB = 1) = P (n ∪ d, c) = P (n, c) + P (d, c)

P (DA = 1, DB = 1|ZA = 1, ZB = 1) = P (c, c).

Corollary 1

P (DA = 0, DB = 0|ZA = 1, ZB = 1) = P (n ∪ d, n ∪ d)

P (DA = 0|ZA = 1, ZB = 0) = P (j ∪ n, ·) = P (j, ·) + P (n, ·)

P (DB = 0|ZA = 0, ZB = 1) = P (·, j ∪ n) = P (·, j) + P (·, n)

P (DA = 1|ZA = 1, ZB = 1) = P (c, ·) = P (s, ·) + P (j, ·)

P (DA = 0|ZA = 1, ZB = 1) = P (n ∪ d, ·) = P (n, ·) + P (d, ·)

P (DB = 1|ZA = 1, ZB = 1) = P (·, c) = P (·, s) + P (·, j)

P (DB = 0|ZA = 1, ZB = 1) = P (·, n ∪ d) = P (·, n) + P (·, d).
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Remarks

1. The proof of Lemma 1 is given in Appendix A. The results in Corollary 1 are all

consequences of Lemma 1, but of course can be shown directly as well.

2. If, say, member A cannot be a cross-defier, then the marginal compliance type proba-

bilities P (s, ·), P (j, ·) and P (n, ·) are all identified. Similarly, if member A cannot be

a joint complier, then the marginal compliance probabilities P (s, ·), P (n, ·) and P (d, ·)

are identified.

3.2 The causal interpretation of three IV estimands

Estimators and estimands Each pair in the target population is associated with a ran-

dom 5-vector (Y,DA, DB, ZA, ZB). The following assumption imposes an additional technical

condition on the distribution of this vector and describes the sample data.

Assumption 4 [iid] (i) E(|Y |2) < ∞. (ii) Let {(Yi, DA,i, DB,i, ZA,i, ZB,i)}
n
i=1 be independent

and identically distributed draws from the population of pairs.

We study a number of IV estimators, constructed either over the full sample or a suitable

subsample.

(i) Consider the IV regression of Y on DA and a constant in the ZB = 0 subsample, using

ZA as an instrument for DA. Of interest is the estimated slope coefficient:

δ̂A0 =

∑

i:ZB,i=0(Yi − Ȳ )(ZA,i − Z̄A)
∑

i:ZB,i=0(DA,i − D̄A)(ZA,i − Z̄A)
,

where the upper bar denotes the sample mean in the ZB = 0 subsample.

By Assumption 4 and standard arguments based on the law of large numbers, the

probability limit of δ̂A0 as n → ∞ is given by the Wald estimand

δA0 =
E(Y |ZA = 1, ZB = 0)− E(Y |ZA = 0, ZB = 0)

E(DA|ZA = 1, ZB = 0)− E(DA|ZA = 0, ZB = 0)
. (4)

As δA0 derives from a pair-level regression, inference about this parameter does not

require clustered standard errors as in Halloran and Hudgens (2008).
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(ii) The IV regression described in point (i) above can also be implemented in the ZB = 1

subsample. Denoting the slope coefficient by δ̂A1, its probability limit is given by

another Wald estimand

δA1 =
E(Y |ZA = 1, ZB = 1)− E(Y |ZA = 0, ZB = 1)

E(DA|ZA = 1, ZB = 1)− E(DA|ZA = 0, ZB = 1)
. (5)

(iii) One can also run a full-sample IV regression of Y on a constant, DA, DB, and DADB,

instrumented by ZA, ZB and ZAZB. More formally, let D = (DA, DB, DADB), D̈ =

(1, D′)′, Z = (ZA, ZB, ZAZB)
′ and Z̈ = (1, Z ′)′. The IV estimator is a 4 × 1 vector

β̂ = (β̂0, β̂A, β̂B, β̂AB)
′ given by

β̂ =

(

n
∑

i=1

Z̈iD̈
′
i

)−1 n
∑

i=1

Z̈iYi.

Again, taking the probability limit of β̂ under Assumption 4 yields the estimand

β = (β0, βA, βB, βAB)
′ = [E(Z̈D̈′)]−1E(Z̈Y ).

Identification results The following three theorems, the main results of this paper, state

the causal interpretation of the estimands defined above.

Theorem 1 Under Assumptions 1, 2 and 3, the Wald estimand (4) is equal to

ATEA|B̄(s ∪ d, ·).

Remarks

1. Theorem 1 states that the Wald estimand identifies the average effect of treatment A

alone among pairs where member A is a self-complier or a cross-defier. If the latter

type is not present, the esimand reduces to the classic LATE parameter of Imbens and

Angrist (1994).

2. There is of course a corresponding result for treatment B which can be obtained by

interchanging the subscripts A and B throughout expression (4) and Theorem 1, and

replacing (s ∪ d, ·) with (·, s ∪ d).
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3. It is important to recall that Y could be an outcome associated solely with member

B. In this case the Wald estimand identifies the average spillover effect on member

B of a treatment applied to member A — among pairs where A is a self-complier or

cross-defier.

The Wald estimand (4) has a straightforward interpretation because the condition ZB = 0

completely rules out treatment participation by member B and has limited impact on A’s

takeup decision. By contrast, the estimand (5) conditions on ZB = 1, which allows for a

much richer set of responses by different types of pairs. As a result, the causal interpretation

of (5) is much less straightforward.

Theorem 2 Under Assumption 1, 2 and 3, the Wald estimand (5) is equal to

ATEAB(c, j)
P (c, j)

P (c, ·)
+ ATEA|B(c, s)

P (c, s)

P (c, ·)
+ ATEA|B̄(c, n)

P (c, n)

P (c, ·)
+ ATEA|B̄(c, d)

P (c, d)

P (c, ·)

−ATEB|Ā(c, d)
P (c, d)

P (c, ·)
−ATEB|Ā(n ∪ d, d)

P (n ∪ d, d)

P (c, ·)
+ ATEB|Ā(n ∪ d, j)

P (n ∪ d, j)

P (c, ·)
(6)

Corollary 2 Suppose, in addition, that there are no cross-defiers with respect to either

instrument and there are no (n, j) or (j, n) pairs. Then the Wald estimand (5) is equal to

ATEAB(c, j)
P (c, j)

P (c, ·)
+ ATEA|B(c, s)

P (c, s)

P (c, ·)
+ ATEA|B̄(c, n)

P (c, n)

P (c, ·)
. (7)

Remarks

1. The proof of Theorem 2 is given in Appendix B. The corresponding result for the

IV regression involving treatment B in the ZA = 1 subsample can be obtained by

interchanging the role of A and B in (5), (6) and (7).

2. Again, the interpretation of Theorem 2 and Corollary 1 is enriched by the fact that Y

can be an outcome associated with A alone, B alone, or the pair (A,B).

3. As the general expression (6) is rather complicated, we start with the interpretation of

the special case (7). The simplifying assumptions imposed in Corollary 1 are motivated

and discussed in Section 2.3. As in the absence of cross-defiers P (c, ·) = P (c, j) +

P (c, s) + P (c, n), the probability weights in (7) sum to one. Thus, the Wald estimand
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is a weighted average of three causal effects. Moreover, the weights can be identified

from the observed data using Lemma 1 and Corollary 1.

4. To understand the causal effects appearing in expression (7), consider changing ZA

from 0 to 1 conditional on ZB = 1. In this case (c, j) pairs will switch from no

treatment at all to both treatments, contributing the first term in (7). For (c, s) pairs,

member A switches from no treatment to treatment A, while member B continues

to take treatment B throughout. This contributes the second term. Finally, among

(c, n) pairs member A switches from no treatment to treatment A, while member B

continues to abstain from treatment. This option contributes the last term.

5. The general expression (6) follows the same logic — it reflects the reaction of various

types of pairs to changing ZA from 0 to 1 while maintaining ZB = 1. However, in

the general case there are many more possibilities, including cross-defiers dropping the

treatment when ZA is turned on. The end result is a linear combination of average

treatment effects where some of the weights are negative and do not sum to one. The

usefulness of the general result lies mainly in the fact that one can readily “customize”

it with simplifying assumptions that fit the application at hand.

Finally, Theorem 3 states the causal interpretation of the elements in the coefficient

vector β = (β0, βA, βB, βAB)
′.
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Theorem 3 Under Assumptions 1, 2 and 3,

β0 = E[Y (00)]

βA = ATEA|B̄(s ∪ d, ·)

βB = ATEB|Ā(·, s ∪ d)

βAB = ATEA|B(c, c)− ATEA|B̄(c, c) (8)

+
P (j, ·)

P (c, c)
[ATEA|B̄(j, ·)− ATEA|B̄(s ∪ d, ·)] (9)

+
P (·, j)

P (c, c)
[ATEB|Ā(·, j)− ATEB|Ā(·, s ∪ d)] (10)

+
P (d, ·)

P (c, c)
[ATEA|B̄(s ∪ d, ·)− ATEA|B̄(d, ·)] (11)

+
P (·, d)

P (c, c)
[ATEB|Ā(·, s ∪ d)− ATEB|Ā(·, d)]. (12)

Remarks

1. The proof of Theorem 3 is given in Appendix C.

2. The coefficients on the stand-alone treatment dummies are the same as in the split

sample case, i.e., they identify the average effect of the treatment in question (with

the other turned off) among pairs where the corresponding member is a self-complier

or cross-defier.

3. The coefficient on the interaction term has a complex interpretation. Term (8) is

the local average interaction effect (LAIE) of the two treatments among (c, c) pairs,

which would presumably be of interest in many applications. However, this quantity

is confounded by additional terms that depend on the heterogeneity of the average

treatment effect across types. For example, term (9) compares the average effect of

treatment A, applied in isolation, across two subpopulations: pairs where member A

is a joint complier versus pairs where member A is a self-complier or a cross-defier.

While the latter average treatment effect is identified by βA, the former is not. Terms

(10), (11) and (12) have analogous interpretations.
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4. The presence of the confounding “heterogeneity terms” is due to joint compliers and

cross-defiers — types that react to their partner’s instrument as well. Under the

treatment exclusion restriction these types are not present, and βAB identifies the LAIE

of the two treatments among (s, s) pairs, as also shown by Theorem 2 of Blackwell

(2017).7 In applications where the treatment exclusion restriction does not hold, it

may still be possible to argue for weaker simplifying assumptions such as the absence

of cross-defiers (for one or both of the treatments). In this case P (·, j) and/or P (j, ·)

becomes identified and the only unknowns that remain in (9) and (10) are ATEA|B̄(j, ·)

and ATEB|Ā(·, j). While these quantities are not point-identified, it may be possible to

bound them either by expert judgement or perhaps even by Manski-type bounds that

use only very weak assumptions and the data. Hence, one could still learn something

useful about the interaction effect (8). We illustrate a variant of this approach in our

application in Section 4.

4 Empirical Application

4.1 Data and IV results

In this section, we present an empirical illustration for our method based on data from the

Student Achievement and Retention Project first analysed by Angrist, Lang and Oreopoulos

(2009). This program, implemented at a campus in Canada in fall 2005, randomly assigned

two treatments, namely academic services in the form of tutoring and financial incentives

among first year college students whose high school grade point average was lower than

the upper quartile. Tutoring included both access to more experienced, trained students

supposed to provide academic support, as well as sessions aiming at improving study habits.

The financial incentives consisted of conditional cash payments, ranging from 1000 to 5000

Canadian Dollars, which were paid out if a student reached a specific average grade target

in college, as a function of the grade point average previously attained in high school. In our

empirical application, DA is a binary variable indicating the takeup of any form of tutoring,

7This result holds even without one-sided non-compliance.
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while DB is an indicator for signing up to receive financial incentives. We are interested in

the impact of these treatments on the average grade at the end of the fall semester, which

is our outcome variable Y . The latter is measured as a credit-weighted average on a 0-100

grading scale for students taking one or more one-semester courses.

The random offer of the treatments in the Student Achievement and Retention Project

was partly overlapping in the sense that some students were invited to either one of the

treatments, to both, or neither. In this context, the instruments ZA and ZB correspond

to binary indicators for being invited (and thus, being eligible) for tutoring and financial

incentives. Thus, we are in the previously mentioned special case (covered by our framework)

where the very same individual is (potentially) targeted by two distinct treatments, rather

than having a pair of individuals that might be targeted by the same treatment.

Treatment takeup DA and DB may endogenously differ from the random assignment ZA

and ZB, respectively, because background characteristics such as personality traits likely

drive both the treatment decision and academic performance. For instance, among those

students offered tutoring and/or financial incentives, less motivated individuals satisfied with

lower exam grades might not be willing to take the treatment(s), no matter if they received an

offer or not. Due to such never takers, not all subjects comply with the random assignment,

such that the groups taking and not taking the treatment(s) generally differ in terms of

outcome-relevant characteristics. On the other hand, among those students not offered the

respective treatment, nobody managed to not comply with the assignment by taking that

treatment anyway. For this reason, non-compliance in our data is one-sided, as postulated

in Assumption 2.

Applying traditional IV approaches (ruling out relaxations of the exclusion restriction),

the findings of Angrist, Lang and Oreopoulos (2009) point to positive effects of financial

incentives or combined treatments among females, but not among males. For this reason, our

empirical illustration only focuses on female students, all in all 948 observations. However,

for 150 females, the outcome is missing, implying that these students did not take any

exams in the fall semester. As missing outcomes outcomes are not statistically significantly

associated with ZA or ZB (with p-values exceeding 20%), we drop those observations from
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the sample, leaving us with 798 females for which the outcomes (as well as treatments and

instruments) are observed.

Table 1 provides descriptive statistics for our evaluation sample, namely the treatment

and outcome means in the total sample and in subsamples defined by the instrument values

ZA and ZB. We see that Assumption 2 holds in our sample, as the treatment probabilities

of DA and DB are zero whenever ZA and ZB, respectively, are zero. That is, the treatment

frequencies observed in our data suggest that P (DA|ZA = 0, ZB = 1) = P (DA|ZA = 0, ZB =

0) = 0 and P (DB|ZA = 1, ZB = 0) = P (DB|ZA = 0, ZB = 0) = 0 hold, such that one-

sided non-compliance is satisfied. As a further observation, the average grade (Y ) is highest

among female students receiving both instruments and lowest among those receiving neither.

The difference in average outcomes between both groups is statistically significant at the 1%

level, pointing to a non-zero reduced form effect of the joint instruments ZA and ZB on Y .

Moreover, the average outcome is somewhat higher among students exclusively eligible for

financial incentives than among those exclusively eligible for tutoring (but this difference is

not statistically significant at the 10% level).

Table 1: Treatment and outcome means in the sample and by instruments

Variable Total sample ZA = 1, ZB = 1 ZA = 0, ZB = 1 ZA = 1, ZB = 0 ZA = 0, ZB = 0

DA 0.08 0.49 0.00 0.28 0.00

DB 0.22 0.81 0.93 0.00 0.00

Y 63.78 66.98 65.75 63.57 62.83

Obs. 798 67 134 116 481

Notes: The row ‘Obs’ provides the number of observations in the various (sub-)samples.

To present the effect of the instruments on the treatments (the “first stage”), Tables

2, 3 and 4 report (differences of) conditional probabilities of the first, second, and joint

treatments, respectively, and relate them to specific compliance types. When linking the

conditional probabilities to the compliance types, we impose two restrictions ruling out the

existence of some types not directly needed to explain the takeup patterns in the data. This
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permits identifying the shares of the remaining types as well simplifying the ATE expressions;

see Theorems 1 and 2 and Corollary 2 in Section 3.2.

The first restriction rules out cross-defiers with respect to treatment DA (i.e., the instru-

ment ZB). This implies that when being eligible for it, nobody is discouraged from actually

taking up tutoring services by additionally being eligible for financial incentives. We see

from Table 2 that the nonexistence of cross-defiers is consistent with the data because our

estimates suggest that P (DA = 1|ZA = 1, ZB = 1) − P (DA = 1|ZA = 1, ZB = 0) > 0

(statistically significant at the 1% level); see the discussion in Section 2.3. Yet, we empha-

size that P (DA = 1|ZA = 1, ZB = 1) ≥ P (DA = 1|ZA = 1, ZB = 0) is only a necessary,

but not a sufficient condition for the nonexistence of cross-defiers, so that the plausibility of

the latter restriction must be scrutinized further in the given empirical application. In our

context, it implies that everyone who receives tutoring when eligible for tutoring alone would

also receive tutoring when additionally being eligible for financial incentives. This appears

plausible if one agrees that, if anything, financial incentives for good grades should rather

encourage (but never discourage) the takeup of tutoring given that the latter is expected

to increase academic performance. In the absence of cross-defiers, the estimated shares of

self-compliers (taking tutoring if and only if eligible for it), joint compliers (taking tutoring

if and only if eligible for both treatments) and never takers amount to 28%, 21%, and 51%

respectively.

Table 2: Conditional probabilities of first treatment DA

Conditional probability Estimate Type under non-existence of (d, ·)

P (DA = 1|ZA = 1, ZB = 0) 0.28 P (s, ·)

P (DA = 1|ZA = 1, ZB = 1) 0.49 P (c, ·) = P (j, ·) + P (s, ·)

P (DA = 1|ZA = 1, ZB = 1)

−P (DA = 1|ZA = 1, ZB = 0) 0.21 P (j, ·)

P (DA = 0|ZA = 1, ZB = 1) 0.51 P (n, ·)

The second restriction rules out joint compliers with respect to treatment DB, in line with

the estimates in Table 3, which suggest that P (DB = 1|ZA = 0, ZB = 1)−P (DB = 1|ZA =

22



1, ZB = 1) > 0 (statistically significant at the 5% level). For this difference to be positive,

cross-defiers must be present in the population, and the prevalence of joint compliers must be

limited—we assume that it is in fact zero. The absence of joint compliers implies that among

those eligible for financial incentives, nobody is induced to sign up only because they are also

eligible for tutoring services. In other words, access to tutoring does not positively affect

sign-up decisions for the financial incentive given eligibility for the latter. The assumption

would be violated if some individuals judged their chances of obtaining good grades and

realizing the related financial rewards to be highly dependent on tutoring, so much so that

they would not even sign up for the financial incentive without access to tutoring.8 If this

type of individual is ruled out, then the estimated shares of self-compliers, cross-defiers and

never takers amount to 81%, 12% and 7%, respectively.

Table 3: Conditional probabilities of second treatment DB

Conditional probability Estimate Type under non-existence of (·, j)

P (DB = 1|ZA = 0, ZB = 1) 0.93 P (·, s ∪ d) = P (·, s) + P (·, d)

P (DB = 1|ZA = 1, ZB = 1) 0.81 P (c, ·) = P (s, ·)

P (DB = 1|ZA = 0, ZB = 1)

−P (DB = 1|ZA = 1, ZB = 1) 0.12 P (·, d)

P (DB = 0|ZA = 0, ZB = 1) 0.07 P (·, n)

Table 4 shows that under the nonexistence of cross-defiers with respect to treatment DA

and joint compliers with respect to treatment DB, the conditional joint probabilities of the

two treatments identify the shares of specific joint compliance profiles defined in terms of

both treatments and instruments. Considering for instance P (c, c) = P (c, s), we see that

49% of the female students are estimated to either (i) comply with the intended assignment

of both treatments or (ii) comply with the instrument of the financial incentive and take up

tutoring only when being eligible for both treatments. The estimate of P (n, c) = P (n, s),

the proportion of never takers of the first treatment and self-compliers in terms of the

8It is also somewhat of a puzzle why cross-defiers perceive the availability of a tutor as a disincentive to

sign up for the conditional payment, but we know from the data that this type exists.
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second treatment (individuals never taking up tutoring, but complying with eligibility for

the financial incentive), amounts to 31%. Finally, the estimated share of never takers of the

first treatment and never takers or cross-defiers in terms of the second treatment, P (n, n∪d),

is 19% in our sample.

Table 4: Conditional joint probabilities of treatments DA and DB

Conditional probability Estimate Type under non-existence of (d, ·) and (·, j)

P (DA = 1, DB = 1|ZA = 1, ZB = 1) 0.49 P (c, c) = P (c, s)

P (DA = 0, DB = 1|ZA = 1, ZB = 1) 0.31 P (n, c) = P (n, s)

P (DA = 1, DB = 0|ZA = 1, ZB = 1) 0 P (c, n ∪ d)

P (DA = 0, DB = 0|ZA = 0, ZB = 1) 0.19 P (n, n ∪ d)

Table 5 provides the results of a two stage least squares regression of Y on treatments

DA and DB as well as interaction DADB when using ZA and ZB as well as interaction ZAZB

as instruments. The results of Theorem 3 imply that the constant term provides an estimate

for the mean potential outcome E[Y (00)] when receiving no treatment, suggesting that the

average grade amounts to 62.83 points when female students neither take up tutoring, nor

sign up for financial incentives. In the absence of cross-defiers with respect to the first

treatment DA, the estimate of βA corresponds to the average effect of among self-compliers

when DB is switched off. It implies that among those complying with eligibility for tutoring,

receiving tutoring increases the average grade by 2.58 points when not signing up for financial

incentives at the same time. However, this impact is far from being statistically significant

at any conventional level, as the p-value (based on heteroscedasticity-robust standard errors)

amounts to 55%.

The estimate of βB suggests that among those complying with financial incentives inde-

pendent of their eligibility for tutoring (self-compliers) or only when not additionally being

eligible for tutoring (cross-defiers), signing up for financial incentives has a positive effect

of 3.15 points when not obtaining tutoring. This effect is statistically significant at the 1%

level. In contrast, the estimate of the interaction term βAB is small and statistically insignif-
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Table 5: IV regression of Y on DA, DB and DADB

Variable Coefficient estimate Standard error P-value

Constant 62.83 0.55 0.00

DA 2.58 4.35 0.55

DB 3.15 1.24 0.01

DADB 0.69 5.31 0.90

icant. Nevertheless, as Theorem 3 shows, this term is not straightforward to interpret; the

fact that it is close to zero does not, by itself, imply that there is no interference across the

two treatments. Summing up, we find statistical evidence for a moderately positive average

effect of financial incentives on first semester exam performance among some compliance

types, while for tutoring, the estimated local average effect is too imprecise to draw firm

conclusions about its effectiveness. Whether the effects of tutoring and financial incentives

interact requires further analysis. The next section illustrates how the estimate of βAB can be

combined with auxiliary assumptions to generate partial identification results in the context

of our application.

4.2 Bounding the local average interaction effect based on βAB

In the following discussion we will ignore standard errors and treat the point estimates in

Table 5 as if they were probability limits. Under the auxiliary conditions discussed in Section

4.1, namely that cross-defiers with respect to DA and joint compliers with respect to DB do

not exist, the interaction term βAB presented in Theorem 3 simplifies to

βAB = ATEA|B(c, c)− ATEA|B̄(c, c)

+
P (j, ·)

P (c, c)
[ATEA|B̄(j, ·)− ATEA|B̄(s, ·)]

+
P (·, d)

P (c, c)
[ATEB|Ā(·, s ∪ d)− ATEB|Ā(·, d)].
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We can then express the local average interaction effect (LAIE) parameter as

ATEA|B(c, c)−ATEA|B̄(c, c)

= βAB +
P (j, ·)

P (c, c)
ATEA|B̄(s, ·)−

P (·, d)

P (c, c)
ATEB|Ā(·, s ∪ d) (13)

−
P (j, ·)

P (c, c)
ATEA|B̄(j, ·) +

P (·, d)

P (c, c)
ATEB|Ā(·, d), (14)

where both average effects under (13) are identified along with all the probability weights in

(13) and (14). Hence, by bounding ATEA|B̄(j, ·) and ATEB|Ā(·, d), one obtains upper and

lower bounds on the LAIE. Substituting the point estimates from Tables 2 through 5 into

(13) and (14) yields

ATEA|B(c, c)−ATEA|B̄(c, c)

= 0.69 +
0.21

0.49
(2.58)−

0.12

0.49
(3.15)−

0.21

0.49
ATEA|B̄(j, ·) +

0.12

0.49
ATEB|Ā(·, d)

= 1.02− 0.43 · ATEA|B̄(j, ·) + 0.24 · ATEB|Ā(·, d) (15)

We consider two strategies for bounding the unknown average treatment effects in ex-

pression (15). The first is rather ad-hoc but can still be useful in practice. One can use

the identified treatment effects ATEA|B̄(s, ·) and ATEB|Ā(·, s ∪ d) as a reference point and

combine them with expert judgement or other prior information to state hypothetical upper

and lower bounds for ATEA|B̄(j, ·) and ATEB|Ā(·, d). For example, in the present setting

one may assume that both standalone treatments have a nonnegative effect for all individ-

uals in the population. Hence, the lower bound for any average treatment effect is zero,

which is known as monotone treatment response; see Manski (1997). One can then add (hy-

pothetical) upper bounds expressed as a multiple of the identified effects ATEA|B̄(s, ·) and

ATEB|Ā(·, s∪d). For example, it may be considered unlikely that the average effect of treat-

ment A (tutoring) for joint compliers is more than three times as large as for self-compliers.

Adopting an analogous bound for treatment B (financial incentives) gives

0 ≤ ATEA|B̄(j, ·) ≤ 6.54 and 0 ≤ ATEB|Ā(·, d) ≤ 9.45.

Combining these inequalities with (15) yields

−1.79 ≤ ATEA|B(c, c)− ATEA|B̄(c, c) ≤ 3.29.
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Thus, the sign of the interaction effect is not identified under the conditions above, which is

not surprising given that βAB is close to zero. One could also collect the

(ATEA|B̄(j, ·), ATEB|Ā(·, d))

pairs that are consistent with, say, a positive interaction between the treatments — this type

of indirect reasoning is common in the econometrics literature on sensitivity analysis (e.g.,

Masten and Poirier 2020, Martinez-Iriarte 2021).

The second strategy for bounding ATEA|B̄(j, ·) andATEB|Ā(·, d) is a more formal Manski-

type approach that uses only weak restrictions and the data. In particular, we maintain the

assumption of nonnegative individual treatment effects (when DA and DB are applied in

isolation) and combine it with the fact that the outcome is bounded between 0 and 100.

We then consider the conditional means involved in the definition of the unknown average

treatment effects,

E[Y (10)|(j, ·)], E[Y (00)|(j, ·)], E[Y (01)|(·, d)] and E[Y (00)|(·, d)], (16)

and bound them using other conditional means identified from the data as well as the

conditions above. The construction goes roughly as follows. We take a suitably chosen

conditional mean E[Y (dA, dB)| P] so that P includes (j, ·) or (·, d) as a subset. Using the

law of iterated expectations, we expand E[Y (dA, dB)| P] as a weighted average of one of

the targeted conditional means (16) and other conditional means. Some of the conditional

means in the expansion are point-identified from the data (see Lemma A.1 in Appendix A)

and others can be bounded by identified ones under the assumption of nonegative individual

treatment effects or, in the worst case, by 0 and 100. We rearrange the resulting inequalities

to obtain bounds for the target quantities under (16).

Theorem A.1 in Appendix A states general expressions for the bounds obtained using

the strategy outlined above. In the present application all except one are uninformative.9

Specifically, we obtain E[Y (00)| (j, ·)] ≥ 56.12, which, implies 0 ≤ ATEA|B̄(j, ·) ≤ 43.88.

Clearly, this bound is too loose for it to be useful. Nevertheless, Manski-type bounds can

still be informative in other situations.

9This means that the bounds are not tighter than the [0,100] interval.
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5 Conclusion

In this paper, we study a potential outcome framework for randomized experiments (or

quasi-experiments) in which the experimental units are pairs, and there are two (potentially)

different treatments targeted at the two pair members. Compliance with the intended treat-

ment assignments is allowed to be endogenous, including possible coordination among pair

members in treatment takeup. Our setup allows for the presence of compliance types that,

to our knowledge, have not been considered in the literature, but are apparently needed to

accommodate some applications. In particular, in a regression of, say, DA on ZA and ZB, we

allow a negative coefficient on ZB. This means that there are individuals in the population

for whom the presence of ZB represents a negative incentive to take treatment A (we call

them cross-defiers). While there are a growing number of papers relaxing SUTVA in various

ways, our framework is particularly flexible as it simultaneously allows for endogenous non-

compliance, interference as well as coordinated treatment takeup under conditions weaker

than Blackwell (2017) or Vazquez-Bare (2022).

We derive the causal interpretation of three IV regressions, the most complex being the

(pair-level) regression of Y on DA, DB and DADB, instrumented by ZA, ZB and ZAZB.

A general conclusion that follows from these somewhat complicated identification results

is that if the treatment exclusion restriction does not apply, i.e., pair members can base

their participation decision on the two instruments jointly, then it becomes hard to separate

treatment interaction from treatment effect heterogeneity. If the former is of interest, as it

often is, one must introduce some auxiliary identifying assumptions that help isolate one

from the other. For example, in our empirical application we present strategies that can

be used to bound a local average interaction effect (LAIE) between two treatments. The

primary advantage of our general results is that these auxiliary assumptions can be tailored

to the application at hand and one does not need to discard observations that do not fit into

a narrower, less flexible interpretative framework.

There are somewhat more positive results when it comes to identifying the effects of

treatment A and B separately. Even with coordinated treatment takeup, the standard

LATE parameter associated with, say, treatment A applied in isolation is identified by the
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estimated coefficient on DA in the regression above provided that one-sided non-compliance

holds with respect to ZA and there are no cross-defiers with respect to ZB. (This is the

same result as in Vazequez-Bare 2022.) Nevertheless, our general results also show that if

cross-defiers are present, then the same estimand no longer reflects the average treatment

effect for self-compliers alone, but rather the average treatment effect across two compliance

types: self-compliers and cross-defiers.

We also study a conditional Wald estimator not considered in the literature thus far.

It consists of the IV regression of Y on DA in the ZB = 1 subsample. While the limit of

the estimator is rather complicated in general, it reduces to the weighted average of three

meaningful causal effects under auxiliary conditions (including no cross-defiers). Moreover,

the weights are individually identified.

To illustrate the application of our identification results in a real world experiment, we

analyze a program randomly offering tutoring services (treatment A) and financial incen-

tives (treatment B) to female college students, in order to assess the treatments’ effects on

academic performance among certain compliance types.
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Appendix

A Identification results for E[Y (dA, dB)| P ]

The coefficient βAB in Theorem 3 does not have a “clean” interpretation because it conflates the interaction

between the two treatments (term (8)) with the heterogeneity of the treatment effects across various com-

pliance types (terms (9) through (12)). Nevertheless, it is possible to bound the influence of the latter set

of terms in the spirit of Manski (1989, 1990). Manski-type bounds are based on general assumptions such

as the following. These restrictions are also plausible in the application presented in Section 4.

Assumption A.1 [bound] (a) Y (dA, dB) ∈ [0,K] for some K > 0; (b) Y (10) ≥ Y (00) and Y (01) ≥ Y (00).

Part (a) states that the potential outcomes are bounded; the fact that the lower bound is set to zero is

a normalization. Part (b) postulates that when treatment A is applied in isolation, it has a positive effect

on any individual unit, and the same is required of treatment B. While it is often the case that researchers

have prior expectations about the sign of the treatment effect, the requirement that it applies uniformly in

the population is a non-trivial restriction on heterogeneity. Importantly, however, part (b) does not restrict

the interaction between the two treatments—the joint effect of treatments A and B applied together could

even be negative.

The following lemma, which does not yet use Assumption A.1, states the causal interpretation of the

conditional mean of Y given all possible configurations of (DA, DB, ZA, ZB).

Lemma A.1 (a) Under Assumptions 1, 2 and 3, the following conditional moments of the potential out-

comes are identified:

E[Y (00)] = E[Y |DA = 0, DB = 0, ZA = 0, ZB = 0]

E[Y (00)| (n ∪ j, ·)] = E[Y |DA = 0, DB = 0, ZA = 1, ZB = 0]

E[Y (00)| (n ∪ d, n ∪ d)] = E[Y |DA = 0, DB = 0, ZA = 1, ZB = 1]

E[Y (10)| (s ∪ d, ·)] = E[Y |DA = 1, DB = 0, ZA = 1, ZB = 0]

E[Y (10)| (c, n ∪ d)] = E[Y |DA = 1, DB = 0, ZA = 1, ZB = 1]

E[Y (11)| (c, c)] = E[Y |DA = 1, DB = 1, ZA = 1, ZB = 1]

There are three additional results that can be obtained by interchanging the roles of pair members A and B

in the three non-symmetric expressions above.

(b) In consequence of the results above, the following moment is also identified:

E[Y (00)| (s ∪ d, ·)] =
1

P (s ∪ d, ·)

{

E[Y (00)]− E[Y (00)| (n ∪ j, ·)]P (n ∪ j, ·)
}

.

An additional result can be obtained by interchanging the roles of pair members A and B above.
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The proof of Lemma A.1 is in Appendix B.5. Lemma A.1 can be combined with Assumption A.1 to

derive bounds for other conditional means of the form E[Y (dA, dB)| P ]. Here we report bounds for the

conditional means in (16) under the auxiliary assumptions A /∈ d and B /∈ j, maintained in the application

(Section 4).

Theorem A.1 Suppose that Assumptions 1, 2, 3 and A.1 are satisfied. If, in addition, A /∈ d and B /∈ j,

then the following inequalities hold true:

(i) L00(j, ·) ≤ E[Y (00)|(j, ·)] ≤ U00(j, ·), where

L00(j, ·) ≡ E[Y (00)|(n ∪ j, ·)]
P (n ∪ j, ·)

P (j, ·)
− E[Y (00)|(n, n ∪ d)]

P (n, n ∪ d)

P (j, ·)

− E[Y (01)|(n, s)]
P (n, s)

P (j, ·)

U00(j, ·) ≡ E[Y (00)|(n ∪ j, ·)]
P (n ∪ j, ·)

P (j, ·)
− E[Y (00)|(n, n ∪ d)]

P (n, n ∪ d)

P (j, ·)

(ii) L10(j, ·) ≤ E[Y (10)|(j, ·)] ≤ U10(j, ·), where

L10(j, ·) ≡ E[Y (10)|(c, n ∪ d)]
P (c, n ∪ d)

P (j, ·)
− E[Y (10)|(s, ·)]

P (s, ·)

P (j, ·)

U10(j, ·) ≡ E[Y (10)|(c, n ∪ d)]
P (c, n ∪ d)

P (j, ·)
− E[Y (10)|(s, ·)]

P (s, ·)

P (j, ·)
+K

P (c, c)

P (j, ·)

(iii) L01(·, d) ≤ E[Y (01)|(·, d)] ≤ U01(·, d), where

L01(·, d) ≡ E[Y (01)|(·, s ∪ d)]
P (·, s ∪ d)

P (·, d)
− E[Y (01)|(n, s)]

P (n, s)

P (·, d)
−K

P (c, s)

P (·, d)

U01(·, d) ≡ E[Y (01)|(·, s ∪ d)]
P (·, s ∪ d)

P (·, d)
− E[Y (01)|(n, s)]

P (n, s)

P (·, d)

(iv) L00(·, d) ≤ E[Y (00)|(·, d)] ≤ U00(·, d), where

L00(·, d) ≡ E[Y (00)|(·, s ∪ d)]
P (·, s ∪ d)

P (·, d)
−K

P (·, s)

P (·, d)

U00(·, d) ≡ E[Y (00)|(·, s ∪ d)]
P (·, s ∪ d)

P (·, d)

∧

{

E[Y (00)|(n, n ∪ d)]
P (n, n ∪ d)

P (·, d)
+ E[Y (10)|(c, n ∪ d)]

P (c, n ∪ d)

P (·, d)

}

Moreover, all bounds stated above can be computed from the data using Lemma 1, Corollary 1 and Lemma A.1.

Remarks

1. The proof of Theorem A.1 is outlined in Appendix B.6.

2. The bounds stated in Theorem A.1 can, in principle, be used to bound ATEA|B̄(j, ·) and ATEB|Ā(·, d)

in (14). However, the bounds may not be informative in a given application. Any negative lower bound

can be replaced by 0 and any upper bound greater than K can be replaced by K.
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B Proofs

B.1 Proof of Lemma 1

For brevity, here we only show the first claim in Lemma 1; all other proofs follow the same scheme. Using

the relationship between DA and the potential treatment status indicators (equation (2)) as well as the fact

that the instruments are randomly assigned (Assumption 1), we can write

P [DA = 1|ZA = 1, ZB = 0] = P [DA(10) = 1|ZA = 1, ZB = 0] = P [DA(10) = 1].

By Definition 1, the condition DA(10) = 1 is consistent with A being a self-complier or a cross-defier and

does not restrict the behavior of B. Hence, P [DA(10) = 1] = P (s ∪ d, ·). As self-compliers and cross-defiers

are two mutually exclusive groups, P (s ∪ d, ·) = P (s, ·) + P (d, ·).

B.2 Proof of Theorem 1

Let ZA = ZB = 0. By Assumption 2, this implies DA = DB = 0. Therefore, Y = Y (00) so that

E[Y |ZA = 0, ZB = 0] = E[Y (00)|ZA = 0, ZB = 0] = E[Y (00)],

where the last equality uses Assumption 1(ii) (random assignment of the instruments). Now let ZA = 1,

ZB = 0. Substituting this condition into equations (2) and (1) gives Y = Y (00) + (Y (10)− Y (00))DA(10)

so that

E[Y |ZA = 1, ZB = 0] = E[Y (00)] + E[(Y (10)− Y (00))DA(10)],

where Assumption 1(ii) is used again. It follows that

E[Y |ZA = 1, ZB = 0]− E[Y |ZA = 0, ZB = 0]

= E[(Y (10)− Y (00))DA(10)] = E[Y (10)− Y (00)|DA(10) = 1]× P [DA(10) = 1]

= ATEA|B̄(s ∪ d, ·)P (s ∪ d, ·)

given that DA(10) = 1 ⇔ A ∈ s ∪ d by Definition 1. Finally, E[DA|ZA = 1, ZB = 0] = P (s ∪ d, ·) > 0

by Lemma 1 and Assumption 3, and E[DA|ZA = 0, ZB = 0] = 0 by one-sided non-compliance. Thus,

δA0 = ATEA|B̄(s ∪ d, ·) as claimed.

B.3 Proof of Theorem 2 and Corollary 2

The denominator in (5) is equal to P (c, ·) by Corollary 1 and the fact that E[DA|ZA = 0, ZA = 1] = 0. We

will now analyze the numerator. Conditional on {ZA = 1, ZB = 1} the observed outcome Y is

Y (11)DA(11)DB(11) + Y (10)DA(11)[1−DB(11)] + Y (01)[1−DA(11)]DB(11)

+Y (00)[1−DA(11)][1−DB(11)]. (17)
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On the other hand, conditional on {ZA = 0, ZB = 1}, the observed outcome is simply

Y (01)DB(01) + Y (00)[1−DB(01)], (18)

as DA(01) = 0 by Assumption 2. Then, by random assignment (Assumption 1(ii)),

E[Y |ZA = 1, ZB = 1]− E[Y |ZA = 0, ZB = 1] = E[(17)− (18)], (19)

where the expectation on the r.h.s. of (19) is with respect to the joint distribution of the random variables

Y (i, j), i, j ∈ {0, 1}, DA(11), DB(01), DB(11).

To calculate this expectation, we first condition on the eight mutually exclusive (and exhaustive) events

defined by the possible values of the vector (DA(11), DB(01), DB(11)). We then average these conditional

expectations using the probability weights of the various events. The eight cases are summarized below:

Event Interpretation Probability (17)−(18)

DA(11) = 0, DB(01) = 0, DB(11) = 0 A ∈ n ∪ d, B ∈ n P (n ∪ d, n) 0

DA(11) = 1, DB(01) = 0, DB(11) = 0 A ∈ c, B ∈ n P (c, n) Y (10)− Y (00)

DA(11) = 1, DB(01) = 1, DB(11) = 0 A ∈ c, B ∈ d P (c, d) Y (10)− Y (01)

DA(11) = 1, DB(01) = 0, DB(11) = 1 A ∈ c, B ∈ j P (c, j) Y (11)− Y (00)

DA(11) = 1, DB(01) = 1, DB(11) = 1 A ∈ c, B ∈ s P (c, s) Y (11)− Y (01)

DA(11) = 0, DB(01) = 1, DB(11) = 0 A ∈ n ∪ d, B ∈ d P (n ∪ d, d) Y (00)− Y (01)

DA(11) = 0, DB(01) = 0, DB(11) = 1 A ∈ n ∪ d, B ∈ j P (n ∪ d, j) Y (01)− Y (00)

DA(11) = 0, DB(01) = 1, DB(11) = 1 A ∈ n ∪ d, B ∈ s P (n ∪ d, s) 0

Clearly, the first and the last case does not contribute to the r.h.s. of (19). Averaging the remaining six

cases yields:

δA1 × P (c, ·) = E[Y |ZA = 1, ZB = 1]− E[Y |ZA = 0, ZB = 1] = E[(17)− (18)]

+E[Y (10)− Y (00)|A ∈ c, B ∈ n]P (c, n) + E[Y (10)− Y (01)|A ∈ c, B ∈ d]P (c, d)

+E[Y (11)− Y (00)|A ∈ c, B ∈ j]P (c, j) + E[Y (11)− Y (01)|A ∈ c, B ∈ s]P (c, s)

+E[Y (00)− Y (01)|A ∈ n ∪ d,B ∈ d]P (n ∪ d, d) + E[Y (01)− Y (00)|A ∈ n ∪ d,B ∈ j]P (n ∪ d, j)

= ATEA|B̄(c, n)P (c, n) + E[Y (10)− Y (01)|A ∈ c, B ∈ d]P (c, d) (20)

+ATEAB(c, j)P (c, j) +ATEA|B(c, s)P (c, s)

−ATEB|Ā(n ∪ d, d)P (n ∪ d, d) +ATEB|Ā(n ∪ d, j)P (n ∪ d, j)

We can further decompose the second term in (20) as

E[Y (10)− Y (01)|A ∈ c, B ∈ d]P (c, d)

= E[Y (10)− Y (00)|A ∈ c, B ∈ d]P (c, d) + E[Y (00)− Y (01)|A ∈ c, B ∈ d]P (c, d)

= ATEA|B̄(c, d)P (c, d)−ATEB|Ā(c, d)P (c, d)
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Combining the results above yields the expression for δA1 stated in Theorem 2. Corollary 2 is a straight-

forward consequence that follows from the general expression when imposing the additional simplifying

conditions stated in the corollary.

B.4 Proof of Theorem 3

We will make heavy use of the following simple lemma in the final stages of the proof.

Lemma B.4.1 Let P be a set of pairs, i.e., P ⊆ {s, j, n, d}2. Let the sets P1 ⊂ P and P2 ⊂ P form a

partition of P. Then:

ATEA|B(P)P (P) = ATEA|B(P1)P (P1) +ATEA|B(P2)P (P2).

The same decomposition holds true if A|B is replaced by A|B̄, AB, etc., throughout.

Proof: We can write

ATEA|B(P)P (P) = E
[

Y (11)− Y (01)
∣

∣ (A,B) ∈ P
]

P (P) = E
{

[

Y (11)− Y (01)
]

· 1
(

(A,B) ∈ P
)

}

= E
{

[

Y (11)− Y (01)
]

·
[

1
(

(A,B) ∈ P1

)

+ 1
(

(A,B) ∈ P2

)

]}

= E
{

[

Y (11)− Y (01)
]

· 1
(

(A,B) ∈ P1

)

}

+ E
{

[

Y (11)− Y (01)
]

· 1
(

(A,B) ∈ P2

)

}

= E
[

Y (11)− Y (01)
∣

∣ (A,B) ∈ P1

]

P (P1) + E
[

Y (11)− Y (01)
∣

∣ (A,B) ∈ P2

]

P (P2)

= ATEA|B(P1)P (P1) +ATEA|B(P2)P (P2).

Proof outline The proof of Theorem 3 is based on relating the two-stage least squares formulation

of the IV estimand β to the reduced form regression, i.e., the regression of Y on Z̈. In the reduced form

regression the coefficients are intention to treat effects, i.e., they are closely related to the numerators of (4)

and (5). The causal interpretation of these quantities derive from Theorems 1 and 2. On the other hand,

the same coefficients can be thought of as the “product” of the first stage coefficients (from the regression

of D on Z̈) with the second stage coefficients (from the regression of Y on the predicted values of D and a

constant). Of course, the second stage coefficients coincide with β, and hence the causal interpretation of β

follows from “dividing” the reduced form coefficients by the first stage coefficients.

First stage The first stage of the IV estimator consists of regressing DA, DB and DADB on Z =

(ZA, ZB, ZAZB)
′ and a constant to obtain the linear projections (predicted values) D̂A, D̂B and D̂ADB.
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More specifically, write

DA = γA0 + γAAZA + γABZB + γA,ABZAZB + UA

= γA0 + γ′
AZ + UA

DB = γB0 + γBAZA + γBBZB + γB,ABZAZB + UB

= γB0 + γ′
BZ + UB

DADB = γAB,0 + γAB,AZA + γAB,BZB + γAB,ABZAZB + UAB

= γAB,0 + γ′
ABZ + UAB,

where E[UA] = E[UB] = E[UAB] = 0, E[UAZ] = E[UBZ] = E[UABZ] = 0, and

γ′
A = (γAA, γAB, γA,AB); γ′

B = (γBA, γBB, γB,AB); γ′
AB = (γAB,A, γAB,B, γAB,AB).

By standard linear regression theory, the coefficients from the projection of DA have the following

interpretations:

γA0 = E(DA|ZA = 0, ZB = 0) (21)

γAA = E(DA|ZA = 1, ZB = 0)− E(DA|ZA = 0, ZB = 0) (22)

γAB = E(DA|ZA = 0, ZB = 1)− E(DA|ZA = 0, ZB = 0) (23)

γA,AB = E(DA|ZA = 1, ZB = 1)− E(DA|ZA = 0, ZB = 1)

−
[

E(DA|ZA = 1, ZB = 0)− E(DA|ZA = 0, ZB = 0)
]

. (24)

Using the IV Assumptions 1 and 2, particularly random assignment and one-sided non-compliance w.r.t. to

the treatment’s own instrument, these coefficients reduce to:

γA0 = E[DA(00)] = 0 (25)

γAA = E[DA(10)] = P (s ∪ d, ·) (26)

γAB = E[DA(01)]− E[DA(00)] = 0 (27)

γA,AB = E[DA(11)]− E[DA(10)] = P (c, ·)− P (s ∪ d, ·) = P (j, ·)− P (d, ·). (28)

Similar arguments yield

γB0 = 0, γBA = 0, γBB = P (·, s ∪ d), γB,AB = P (·, j)− P (·, d) and

γAB,0 = 0, γAB,A = 0, γAB,B = 0, γAB,AB = P (c, c).

Thus, the predicted values from the first stage are simply D̂A = γ′
AZ, D̂B = γ′

BZ and D̂ADB = γ′
ABZ.
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Second stage The second stage of the IV estimator consists of further projecting Y on D̂A, D̂B and

D̂ADB. More specifically, write

Y = β0 + βAD̂A + βBD̂B + βABD̂ADB + UY

= β0 + βAγ
′
AZ + βBγ

′
BZ + βABγ

′
ABZ + UY

= β0 + (βA, βB, βAB)











γ′
AZ

γ′
BZ

γ′
ABZ











+ UY

= β0 + β′Γ′Z + UY , (29)

where β′ = (βA, βB, βAB), Γ
′ is the 3× 3 matrix

Γ′ =











γ′
A

γ′
B

γ′
AB











=











P (s ∪ d, ·) 0 P (j, ·)− P (d, ·)

0 P (·, s ∪ d) P (·, j)− P (·, d)

0 0 P (c, c)











,

and

E(D̂AUY ) = E(D̂BUY ) = E(D̂ADBUY ) = 0. (30)

As the diagonal elements of Γ are strictly positive under Assumption 3, it follows that Γ′ is nonsingular

or, equivalently, its rows γ′
A, γ

′
B and γ′

AB are linearly independent. Therefore, the orthogonality conditions

(30) can hold only if E[ZUY ] = 0. But this means that equation (29) is also the linear projection of Y on

Z and a constant, i.e., it can be identified with the reduced form regression

Y = π0 + πAZA + πBZB + πABZAZB + UY . (31)

Comparison of the reduced form with the second stage Theorem 3 follows from compar-

ing equation (29) with equation (31) and using the interpretation of the reduced form regression coefficients

as intention to treat effects. In particular, (29) and (31) imply

β′Γ′ = (πA, πB, πAB) ⇔ β = Γ−1











πA

πB

πAB











, (32)

where Γ−1 is given by

Γ−1 =











1
P (s∪d,·) 0 0

0 1
P (s∪d,·) 0

− P (j,·)−P (d,·)
P (s∪d,·)P (c,c) − P (·,j)−P (·,d)

P (·,s∪d)P (c,c)
1

P (c,c)











.
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The second equation under (32) then yields

βA =
πA

P (s ∪ d, ·)
, βB =

πB

P (·, s ∪ d)
,

βAB =
1

P (c, c)

[

πAB − πA

P (j, ·) − P (d, ·)

P (s ∪ d, ·)
− πB

P (·, j)− P (·, d)

P (·, s ∪ d)

]

. (33)

The reduced form coefficients πA, πB, πAB are given by formulas analogous to equations (22), (23) and

(24):

πA = E(Y |ZA = 1, ZB = 0)− E(Y |ZA = 0, ZB = 0) (34)

πB = E(Y |ZA = 0, ZB = 1)− E(Y |ZA = 0, ZB = 0) (35)

πAB = E(Y |ZA = 1, ZB = 1)− E(Y |ZA = 0, ZB = 1)

−
[

E(Y |ZA = 1, ZB = 0)− E(Y |ZA = 0, ZB = 0)
]

. (36)

As can be seen, the coefficient πA is the numerator of the Wald estimand (4), so that πA = ATEA|B̄(s∪

d, ·)P (s ∪ d, ·) by Theorem 1 and Lemma 1. Similarly, πB = ATEB|Ā(·, s ∪ d)P (·, s ∪ d). The interpretation

of πAB is more complicated. The first difference on the rhs of equation (36) is the numerator of the Wald

estimand (5); hence,

E(Y |ZA = 1, ZB = 1)− E(Y |ZA = 0, ZB = 1) = expression (6)× P (c, ·).

The second difference on the rhs of equation (36) is the numerator of the Wald estimand (4); hence,

E(Y |ZA = 1, ZB = 0)− E(Y |ZA = 0, ZB = 0) = ATEA|B̄(s ∪ d, ·)× P (s ∪ d, ·).

Substituting the previous two equations into (36) yields

πAB = ATEA|B̄(c, n)P (c, n) +ATEA|B̄(c, d)P (c, d) −ATEB|Ā(c, d)P (c, d)

+ ATEAB(c, j)P (c, j) +ATEA|B(c, s)P (c, s) +ATEB|Ā(n ∪ d, j)P (n ∪ d, j)

− ATEB|Ā(n ∪ d, d)P (n ∪ d, d) −ATEA|B̄(s ∪ d, ·)P (s ∪ d, ·). (37)

Using Lemma B.4.1 and the definition of ATEAB(c, j), we expand a number of terms in (37) as follows:

• ATEA|B̄(c, n)P (c, n) = ATEA|B̄(s, n)P (s, n) +ATEA|B̄(j, n)P (j, n)

• ATEAB(c, j)P (c, j) = ATEA|B(c, j)P (c, j) +ATEB|Ā(c, j)P (c, j)

• ATEA|B̄(s ∪ d, ·)P (s ∪ d, ·) = ATEA|B̄(s, ·)P (s, ·) +ATEA|B̄(d, ·)P (d, ·)

= ATEA|B̄(s, c)P (s, c) +ATEA|B̄(s, n)P (s, n) +ATEA|B̄(s, d)P (s, d) +ATEA|B̄(d, ·)P (d, ·)
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Substituting the expressions under the bullets above into (37) and rearranging gives

πAB = ATEA|B̄(c, d)P (c, d) −ATEA|B̄(s, d)P (s, d) (38)

+ ATEA|B̄(j, n)P (j, n) −ATEA|B̄(s, c)P (s, c)−ATEA|B̄(d, ·)P (d, ·) (39)

+ ATEA|B(c, j)P (c, j) +ATEA|B(c, s)P (c, s) (40)

+ ATEB|Ā(n ∪ d, j)P (n ∪ d, j) +ATEB|Ā(c, j)P (c, j)] (41)

− ATEB|Ā(n ∪ d, d)P (n ∪ d, d) −ATEB|Ā(c, d)P (c, d) (42)

Using Lemma B.4.1 again, (38) = ATEA|B̄(j, d)P (j, d), (40) = ATEA|B(c, c)P (c, c), (41) = ATEB|Ā(·, j)P (·, j),

and (42) = −ATEB|Ā(·, d)P (·, d). Furthermore, substituting ATEA|B̄(s, c)P (s, c) = ATEA|B̄(c, c)P (c, c) −

ATEA|B̄(j, c)P (j, c) on line (39) and recognizing that

ATEA|B̄(j, d)P (j, d) +ATEA|B̄(j, n)P (j, n) +ATEA|B̄(j, c)P (j, c) = ATEA|B̄(j, ·)P (j, ·)

yields

πAB = [ATEA|B(c, c)−ATEA|B̄(c, c)]P (c, c)

+ ATEA|B̄(j, ·)P (j, ·) −ATEA|B̄(d, ·)P (d, ·)

+ ATEB|Ā(·, j)P (·, j) −ATEB|Ā(·, d)P (·, d). (43)

The proof is completed by substituting (43) and the causal interpretations of πA and πB into (33). After

some straightforward manipulations, this yields the expression for βAB stated in Theorem 3.

B.5 Proof of Lemma A.1

For example, the second equality in Lemma A.1 part (a) can be obtained as follows. The event {DA =

0, DB = 0, ZA = 1, ZB = 0} is equivalent to {DA(10) = 0, ZA = 1, ZB = 0}. (Formally, substitute

ZA = 1, ZB = 0 into equation (2) and take one-sided non-compliance into account.) By Definition 1, the

condition DA(10) = 0 means that individual A is either a never taker or a joint complier, while we learn

nothing about individual B. Therefore,

E[Y |DA = 0, DB = 0, ZA = 1, ZB = 0] = E[Y (00)|DA(10) = 0, ZA = 1, ZB = 0]

= E[Y (00)|DA(10) = 0] = E[Y (00)| (n ∪ j, ·)],

where the second equality uses the random assignment assumption. The statement in part (b) follows from

the law of iterated expectations; specifically, one can write

E[Y (00)] = E[Y (00)| (s ∪ d, ·)]P (s, ·) + E[Y (00)| (n ∪ j, ·)](1 − P (s ∪ d, ·)),

and solve for E[Y (00)| (s ∪ d, ·)].
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B.6 Proof of Theorem A.1

To save space, here we only present the calculations that lead to part (i). All other derivations follow a

similar logic and are available on request.

Using the law of iterated expectations, we can decompose E[Y (00)| (n ∪ j, ·)] as

E[Y (00)| (n ∪ j, ·)]P (n ∪ j, ·) = E
{

Y (00)[1(A ∈ n) + 1(A ∈ j)]
}

= E
{

Y (00)
[

1(A ∈ n,B ∈ n ∪ d) + 1(A ∈ n,B ∈ c) + 1(A ∈ j)
]}

= E[Y (00)1(A ∈ n,B ∈ n ∪ d)] + E[Y (00)1(A ∈ n,B ∈ c)] + E(Y (00)1(A ∈ j)]

= E[Y (00)
∣

∣ (n, n ∪ d)]P (n, n ∪ d) + E[Y (00)
∣

∣ (n, c)]P (n, c) + E[Y (00)
∣

∣ (j, ·)]P (j, ·)

so that

E[Y (00)| (j, ·)] = E[Y (00)| (n ∪ j, ·)]
P (n ∪ j, ·)

P (j, ·)
− E[Y (00)| (n, n ∪ d)]

P (n, n ∪ d)

P (j, ·)
(44)

− E[Y (00)| (n, c)]
P (n, c)

P (j, ·)

as P (j, ·) 6= 0 by Assumption 3. All conditional expectations on the rhs of (44) can be identified using

Lemma A.1 and the auxiliary assumptions that A /∈ d and B /∈ j. Furthermore, by the same auxiliary

assumptions and Lemma/Corollary 1, P (j, ·) and P (n ∪ j, ·) can be identified as in Table 2, and P (n, n∪ d)

and P (n, c) = P (n, s) can be identified as in Table 4. Hence, the only unidentified expression on the rhs is

the conditional expectation E[Y (00)| (n, c)]. Nevertheless, Assumption A.1 and B /∈ j implies

0 ≤ E[Y (00)| (n, c)] = E[Y (00)| (n, s)] ≤ E[Y (01)| (n, c)], (45)

where the upper bound is identified as in Lemma A.1, using A /∈ d. Combining (45) with equation (44) gives

E[Y (00)|(n ∪ j, ·)]
P (n ∪ j, ·)

P (j, ·)
− E[Y (00)|(n, n ∪ d)]

P (n, n ∪ d)

P (j, ·)
− E[Y (01)|(n, s)]

P (n, s)

P (j, ·)

≤ E[Y (00)| (j, ·)]

≤ E[Y (00)|(n ∪ j, ·)]
P (n ∪ j, ·)

P (j, ·)
− E[Y (00)|(n, n ∪ d)]

P (n, n ∪ d)

P (j, ·)
,

where the lower bound is the definition of L00(j, ·) and the upper bound is U00(j, ·).
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